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The Cole-Hopf transformation, that transforms the Burgers equation into the heat-conduction equation, is used to obtain exact 
solutions of the Burgers-Huxley equation, which occurs in the description of many non-linear wave phenomena. The types of 
exact solutions are analysed, depending on the values of the equation parameters. © 2004 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The Burgers-Huxley equation 

U t + c z U U  x = D U x x + f J U + ] t U 2 - ~ ) U  3, D 4 : 0  (1.1) 

is encountered in the description of many non-linear wave phenomena. It is assumed that D is the 
diffusion coefficient, c~ characterizes non-linear transfer, and the parameters [3, 7 and 6 describe a non- 
linear source. 

For example, the equation 

"CP t = 12pxx + e P -  gp3 _ E (1.2) 

describing the motion of the domain wall of a ferroelectric material in an electric field, reduces, via a 
linear substitution, to Eq. (1.1) with a = 0. In Eq. (1.2) P is dipole moment andE  is the external electric 
field. The left-hand side characterizes the dissipative process in which electrostatic energy is converted 
into thermal energy, where z is the characteristic duration of the process (that is, the relaxation time 
of the dipole moment). The first term on the right of the equation describes the interaction between 
the dipole moments of adjacent domains in the ferroelectric material; the other terms define the 
magnitude of the dipole moment in a homogeneous ferroelectric [1]. 

Equations like (1.1) are also used the description of certain ecological models. If a population is 
breeding in a medium, the dynamics of the system, taking into account mortality and the diffusion shift 
of the population through the medium, is described by the equation 

n t = - k n  + Km(n)n 2 + DAn (1.3) 

where n is the size of the population per unit volume and m(n)  is the mass of food [2]. If it is assumed 
that the mass of food varies as m(n)  = m0(1 - n/no), then Eq. (1.3) is a Burgers-Huxley equation with 
o~=0.  

If ~ = 6 =  0, Eq. (1.1) is the Kolmogorov-Petrovskii-Piskunov equation Ut = DUxx + f(x,  t) 
c f (x ,  t) ~U+ 7U 2, which was investigated in [3]. 

Using the linear change of variables U = aU',  x = bx' and t = ct', and properly choosing a, b, and 
c, one can fix any three coefficients (preserving, however, the value of the expressions D~/o~ 2 and [38/72 
during these transformations). 

It has been established that Eq. (1.1) does not pass the Painlev6 test [4, 5], and consequently it is not 
an exactly solvable equation. However, one can try to find a certain set of special solutions, and that is 
the aim of this paper. 

Usually, exact solutions of non-linear partial differential equations are found in travelling-wave 
variables [6], that is, one actually replaces the original equation by an ordinary differential equation 
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whose solution is often easy to find. These methods were discussed in detail in [7]. Below it will be shown 
that other methods yield more general classes of exact solutions than those obtained by transforming 
to travelling-wave variables. 

2. D E T E R M I N A T I O N  OF E X A C T  S O L U T I O N S  

To find exact solutions of Eq. (1.1), we will use the Cole-Hopf  transformation [8, 9] 

U = aZx lZ ,  Z = Z ( x , t )  (2.1) 

We then obtain the equation 

( ( a A + 3 D ) Z x x - Z t - T A Z x ) Z x Z + ( Z x t - D Z x x x - ~ Z x ) z Z + ( ~ A 2 - o ~ A - 2 D ) Z  3 = 0 (2.2) 

Let Zx ~ 0 (otherwise, one obtains the trivial solution U = 0, which need not be considered). Equating 
the coefficients of the different powers of Z to zero, one obtains an over-determined system of equations 
for Z(x, t) 

Z x t -  DZxx x - ~Z x = 0 

(c~A + 3D)Zxx - Z t -  yAZ  x = 0 (2.3) 

~A 2 - o ~ A - 2 D  = 0 

Note that if [~ = Y = ~ =0, Eq. (1.1) becomes the Burgers equation 

U t+o~UU x = DUxx (2.4) 

Then system (2.3) becomes 

Z t = DZxx, (zA+2D = 0 (2.5) 

This is the well-known Cole-Hopf  result: from any solution of the diffusion equation Zt - D Z ~  = O, 
one can obtain a solution of the Burgers equation (2.4) [10, 11] by using transformation (2.1), where 
A is determined from the second equation of system (2.5). 

In what follows we shall consider the case 6 e 0. 
The last equation of system (2.3) yields 

2D 
AI, 2 = 2--~--- ~ /~2  +-'-~" (2.6) 

Henceforth it will be assumed that the rootsA1, 2 are real, that is, the expression under the radical on 
the right of Eq. (2.6) is non-negative. 

Substituting the expression for Zt obtained from the first equation of system (2.3) into the second, 
we obtain the system 

Z t = DZxx + ~Z + C~(t) (2.7) 

( 2 D + o ~ A ) Z x x - Y A Z x - ~ Z - C 1 ( t )  = 0 (2.8) 

where Cfft)  is a function of t. 
The function Z(x, t), determined by system (2.7), (2.8), is reduced by the Cole-Hopf  formula (2.1) 

to a solution of the original equation (1.1). We shall investigate its behaviour as a function of the 
parameters of the original equation. 

3. I N V E S T I G A T I O N  OF T H E  D E P E N D E N C E  OF T H E  E X A C T  
S O L U T I O N S  ON T H E  P A R A M E T E R S  OF T H E  E Q U A T I O N  

The form of the solution of system (2.7), (2.8) depends on the parameters of the equation [3 and 7- The 
solution of Eq. (2.8) also depends on two functions of t, defined by substitution into Eq. (2.7). 
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The case [3 = 0, 7 = 0. Solving Eq. (2.8), we have 

2 
X 

Z(x ,  t) = C l ( t ) 2 ( 2  D + ~ A )  + C 2 ( t )  + C3( t ) x  (3.1) 

Substituting the expression obtained into Eq. (7), we find that 

C,( t )  = c, ,  C2(t )=  ( l + 2 D D ( x A ) C , t + c 2 ,  C 3 ( t  ) = C 3 

where cl, c2 and c3 are arbitrary constants. Substituting these relations into Eq. (3.1) and redefining q ,  
we obtain 

Z ( x ,  t) = c l x 2 / 2  + c 2 + c3x + ( a A  + 3 D ) c l t  

Using the Cole -Hopf  transformation (2.1), we find 

ClX + c 3 
U = A (3.2) 

CLX2/2 + C 2 + C3X + ((xA + 3 D ) C l t  

If c 1 = 0, we have 
c 3 

v = A - -  (3.3) 
C3X + C 2 

The function (3.3) becomes infinite at the point x = -c2/c3 and does not depend on time. 
If cl # 0, then, dividing the numerator  and denominator of expression (3.2) by cl and redefining the 

constants c2 and c3, we have 

x + c 3 (3.4) U 
Ax2/2 + c3x + c 2 + (o~A + 3D) t  

The behaviour of the function (3.4) is determined by the initial conditions and by the sum ~A + 3D. 
The form of the function at the of time may vary: (a) If c 2 - 2c2 > 0, the function (3.4) at t = 0 becomes 
infinite at two ~oints: xl 2 = cl _+ ~ - 2c2, (b) if c32 - 2c2 = 0, the function has one singular point 
x = q ,  (c) if c3 - 2c2 < (), there are no singular points. The dependence of the function (3.4) on time 
is defined by the value of the expression ccA + 3D. When m4 + 3D > 0, the amplitude of the solution 
decreases with time. If m4 + 3D < 0, the function shows the behaviour of an evolution process with 
peaking and the amplitude of function (3.4) increases with time. If o~A + 3D = 0, solution (3.4) does 
not vary with time. 

The behaviour of solution (3.4) as a function ofx and t when aA + 3D > 0 and c 2 - 2c2 > 0 is illustrated 
in Fig. 1. 

The solutions just found belong to the class of functions which are bounded on the real axis for 
c ~ -  2(c2 + (m4 + 3D)t) < 0. 

!t 
t x 10 

0 
- 1 0  

Fig. 1 
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The case ~ = 0, 7 ~ 0. Equation (2.8) yields 

Z ( x ,  t )  - C l ( t ! x  + C 2 ( t  ) + C3( t )exp(kx)  
7A 

where we have put 

2D + o~A ~SA 

Using Eq. (2.7), we find the functions Cl(t), C2(t) and C3(t) as 

Cl( t  ) = cl, C2(t) = Clt+C2, C3(t) --- c3exp(D~.2t) 

(3.5) 

(3.6) 

where cl, c2 and c3 are arbitrary constants. We substitute these relations into Eq. (3.5). Using the explicit 
form of )~ in (3.6) and redefining the constants cl and c2, we apply the Cole-Hopf  transformation (2.1) 
and obtain 

U =  Y 
c I - c3exp(~x + D~.2t) 

~) C I~X  + C 2 -- c3 exp (~,x + D~,2 t) - c 1 7 2 t [ ~  
(3.7) 

Changes in 9~ correspond to expansion, contraction or inversion of the graphs; we will therefore 
consider the case when )~ = 1. 

If c3 = 0, then Cl ¢ 0 (otherwise U = 0). Then, redefining the constant c2, we deduce from (3.7) that 

A 
v - ( 3 . 8 )  

x + c z - 72t/~ 

The function (3.8) has one singular point, x = ~t/~ - Ce. 
If c3 # 0, then dividing it into the numerator  and denominator of expression (3.7) and renaming the 

constants c 1 and Ce, we obtain 

U = %' e I - exp(x + Dt) (3.9) 

8Cl(X + Dt)  + c 2 - -  exp(x + Dt)  - c l t (D + y2/~) 

The denominator of this function will have a different number of zeros at t = 0, depending on cl 
and c2. Put c ,  = cl - CllnCl. Then the function (3.9) will go to infinity twice at the initial instant of time 
if {cl > 0, c2 > c ,}  and will have a single singular point if {c 1 > 0, c2 = c,},  {Cl = 0, c2 > 0} or 
cl < 0. The function (3.9) will be bounded at t = 0 if either of the conditions {Cl = 0, c2 ~< 0} or 
{Cl > 0, c2 < c,} is satisfied. 

The evolution with time of solution (3.9) may be regarded as simultaneous translation along the 
x axis and variation of the parameter c2, the size of the translation corresponding to the parameter D 
and the variation of c2 being (y2/~ + D)c. If (72/~ + D)cl  = 0, the solution (3.9) is expressed in terms 
of travelling-wave variables. In the case when cl > 0, c2 < c ,  and @~ + D > 0 the function (3.9) decays 
with time; its behaviour is similar to that shown in Fig. 2. But if 72/~ + D < 0, a bounded solution will 
exist only for a finite time. 

The solutions just found belong to the class of functions bounded on the real axis provided {cl > 0, 
C 2 -- C1(~2/~ -}- D)t  < c1(1 - lnCl)} or {cl = 0, c2 ~< 0}. 

The case ~ ~ 0, 72 + 45[3 = 0. Equation (2.8) yields 

Z(x,  t) = - Ct( t ) /~  + (C2(t) + C3(t)x)exp(~x);  )~ = 7/(26A) (3.10) 

Substituting expression (3.10) into Eq. (2.7), we have 

C t(t) = cj, C2(t) = (c 2 + 2)~Dc3t)exp((DL 2 + ~)t),  C3(t ) = c3exp((D)~ 2 + [~)t) 

where cl, c 2 and c 3 are arbitrary constant. Hence we obtain 

Z ( x ,  t )  -- - C l / ~  -t- ( c  2 -I- 2)~Dc3t + c3x)exp()~x + (D)~ 2 + ~)t) 
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Then,  by the C o l e - H o p f  fo rmula  (2.1), we find that  

~.(c 2 + 2KDc3 t  ) + ~C3X 4" C 3 
U = A (3.11) 

c z + 2 X D c 3 t  + c3x - (Cl/~3)exp(-)~x - (D)~ 2 + ~) t )  

I f  c3 = 0, then, redefining the constant  Cl, we obta in  a solution in travell ing-wave variables  

)~A 
U = (3.12) 

c 1 e x p ( -  Kx - (D~, 2 + 13)t) + 1 

The  funct ion (3.12) has one  singular poin t  x = ( l n ( - q )  - (D)~ 2 4- f3)t)/K when cl < 0. I f  cl ~> 0, the 
solution is b o u n d e d  over  the entire real axis (this case is i l lustrated in Fig. 3). 

I f  c3 ;~ 0, then, dividing the n u m e r a t o r  and denomina to r  of  expression (3.11) by c 3 and redefining 
the constants  c 1 and c2, we obtain  

~,(X + C 2 + 2D)~t) + 1 
U = a (3.13) 

x + c 2 + 2D~,t  + c l e x p ( -  ~ ( x  + c 2 + 2 D ~ t )  + (D~, 2 - 13)t) 

Af te r  the no ta t ion  S 1 = q e x p ( ( D X  2 - ~)t) and S 2 = c 2 + 2D)~/is introduced,  fo rmula  (3.13) becomes  

)~(x + $2) + 1 
U = A ( x  + $2 ) -t- S 1 exp ( -X(x  + $2)  ) 

(3.14) 

W h e t h e r  the funct ion (3.14) is b o u n d e d  or not  depends  on the p roduc t  $1~. I f  SQ~ ~< 0 o r  SlJ~g -- 1 
(where e is the base  of  na tura l  logari thms),  the funct ion (3.14) will have a single singular point.  I f  
0 < S1Ze < 1, the solution goes to infinity twice. I f  S1Xe > 1, the funct ion (3.14) is bounded  over  the 
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entire real axis (this is the situation illustrated in Fig. 2). Dependence on time is equivalent to the 
variation of $1 and $2, while the sign of the expression S1X does not change. 

The case 13 e 0, 72 + 48~ > 0. Put 

X, 2 - 7 +  ~y2+4'51] 
' 28A 

with the sign chosen in such a way that [ ~1 [ > [ ~2[" It then follows from Eq. (2.8) that 

Z( x, t) = - Cl ( t )/~ + C2( t )exp()h x) + C3( t)exp(X2x) (3.15) 

The functions Cl(t), C2(t), C3(t) are found from Eq. (2.7): 

Cl(t  ) = cl, C2(t ) = c2exp((D~ ~+ [~)t), C3(t ) = c3exp((D~. ~ + ~)t) 

where c1, c2, and c3 are arbitrary constants. Then, substituting these functions into expression (3.15), 
we obtain 

Z(x, t) = c I + C2El(X, t) + c3E2(x, t) ; Ei(x , t) = exp(~,ix + (DX~ + ~)t), i = 1, 2 

Next, using formula (2.1), we calculate 

A ~ , I C z E I  + )~2c3E2 
U = 

c 1 + c 2 E  I + c 3 E  2 
(3.16) 

If c 2 = 0, then c3 ~ 0 (otherwise U = 0). Then, redefining the constant Cl, we have 

)~2E2 A)~ 2 
U = A - -  - (3.17) 

cl +E2 1 +clexp( -X2x- (DXZz+~5) t )  

At t = 0 the function U(x, t) becomes infinite at the point x = - In (-cl), provided that c 1 < 0. If 
cl > 0, then the solution (3.17) is bounded (it is illustrated in Fig. 3). This is a function of travelling- 
wave variables, the passage of time being equivalent to translation along the x axis. 

If c2 e 0, then, dividing into it the numerator and denominator of expression (3.16) and redefining 
the constants Cl and c3, we have 

U = A ~1E1 +~'2c3E2 
ct + E1 + c3E2 (3.18) 

Variation of X1 is equivalent to variation of the scales of the axes. We introduce a new variable y = XlX 
and pu tp  = XJXI( ]p] < 1). Then the function (3.18) has the form 

exp(y) + S l p e x p ( p y )  
U A~I S 2 + exp(y) + Sxexp(py)  (3.19) 

where the parameters $1 and S 2 depend on time and vary as given by 

2 2 
S 1 = c3exp(D(~,z-~,l)t), S 2 = clexp(-(D~+~)t ) 

Depending on the parameters $1, $2 and p, the denominator of the function (3.19) will vanish at a 
different number of points (the function itself will have poles of the first order at these points). There 
are three possible versions: (a) two zeros, if {p < 0, $1 > 0, $2 < S,} or {p > 0, $1 < 0, 0 < $2 < S,}, 
(b) one zero, if {Sip < 0, $2 = S,}, {p > 0, $1 > 0, $2 < 0}, {p > 0, $1 < 0, $2 ~< 0}, {p < 0, Sa < 0} 
or {$1 = 0, $2 < 0}, (c) no zeros if {$1 = 0, $2/> 0} (the solution is expressed in terms of travelling- 
wave variables; it is illustrated in Fig. 3), {So < 0, $2 > S,} (in that case the behaviour of the solution 
is similar to that illustrated in Fig. 2), or {p > 0, $1 > 0, $2 ~> 0} (this situation is demonstrated in 
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Fig. 4). We have put S. = ((1 - p ) / p ) ( - S l p )  l/O-p) here. The passage of time is equivalent to variation 
of $1 and $2. 

The case ;/2 + 4~g < 0. Equation (2.8) yields 

Z(x, t) = C~(t) + exp(kx)(C2( t )s in( lx)  + C3(t)cos(lx))  

where 

k = T l -- J - ( ~ t 2  4" 4 ~ )  
28A' 28A 

Determining the functions Cl(t), C2(t), C3(t ) from Eq. (2.7), we obtain 

Z ( x ,  t) = c I + c2FI (x ,  t) + c3F2(x,  t) 

where 

Fl(x,  t) = E(x, t )s in( lx  + 2Dklt) ,  Fz(x, t) E(x, t )cos(lx  + 2Dklt)  

E(x, t) = exp(kx + (D(k z - 12) + [~)t) 

Here cl, c2 and c3 are arbitrary constants. Then, by the Cole-Hopf formula (2.1), 

U = A (kc2 - lc3)Fl + (lc2 + kc3)F2 

c! + c2F l + c3F  2 
(3.20) 

If 7 ~ 0, the function (3.20) will have an infinite number of singular points. 
If 7 = 0, then k = 0. Put f = Dl; - [3. Then 

C 2 COS ( l x )  - -  C 3 sin (lx) 
U = a l -  exp(ft) (3.21) + czsin(lx ) + c3cos(Ix) 

It follows from formula (3.21) that U(x, t) is periodic inx with period 2~/l, and the position of its zeros 
does not depend on time. If Cl ~ 0 and f > 0, the solution decays with time and the poles disappear 
with time. This case is illustrated in Fig. 5. 

Note that exact solutions of Eq. (1.1), similar to those described above, may also be obtained using 
a generalization of transformation (2.1), namely 

U = A Z x / Z + B ,  Z = Z (x , t )  

The function Z(x, t) and the constants A and B are defined in a manner analogous to that described 
above. 

Thus, exact solutions have been obtained for the Burgers-Huxley equation (1.1) using the Cole-Hopf 
transformation (2.1). It has been established that if ~3 = y = 0 the solution is a rational function ofx  
and t. When ~ = 0, 7~ 0 and ~3 e 0, y2 + 45[3 i> 0, the exact solutions of Eq. (1.1) are expressed in terms 
of exponential functions and polynomials in x and t. If 3' = 0 and 135 < 0, a solution exists which is a 
periodic function ofx  and decays with time. 
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